Deteksi Objek Kereta Api menggunakan Metode Faster R-CNN dengan Arsitektur VGG 16
نویسندگان
چکیده
ABSTRAKKereta merupakan sebuah alat transportasi umum yang sering digunakan oleh masyarakat untuk berpergian dari kota asal ke tujuan. Mereka membutuhkan akan sarana mempermudah aktifitas mereka. Namun kecelakaan di persimpangan jalan raya terlintasi kereta api memiliki angka cukup besar akibat kelalaian petugas menutup palang pintu api. Maka itu penelitian ini dibuat agar mengetahui keberadaan berdasarkan jarak dan tingkat cahayanya siang sampai malam hari. Sistem dibangun menggunakan metode Faster RCNN dengan model arsitektur VGG16 objek antara lokomotif gerbong cahaya terhadap objek. Setelah dilakukan pengujian paling dekat ±2 meter ±250 meter, diperoleh rata-rata akurasi sebesar 79,09%, 97,05%. memperoleh keakurasian deteksi 86,40%, 97,23%.Kata kunci: Deteksi Objek, RCNN, VGG, Kereta Api, Jarak, LuxABSTRACTRailway is a public transportation that often used by the to travel from home town destination city. They need facilitate their activities. But accidents at intersection of highway crossed train has considerable number due negligence officer close railway stopbars. Therefore, this study was made know existence trains based on distance and light level day night. The system built using method with architectural determine objects between locomotives carriages object. After testing closest meters meters, obtained an average accuracy for 79.09%, 97.05%. detection locomotive 86.40%, car 97.23%.Keywords: Object Detection, Railway, Distance, Lux
منابع مشابه
Validasi data dengan menggunakan objek lookup pada borland delphi 7.0
s: Developing an application with some tables must concern the validation of input (scpecially in Table Child). In order to maximize the accuracy and input data validation. Its called lookup (took data from other dataset). There are 2 (two) ways to lookup data from Table Parent: 1) Using Objects (DBLookupComboBox & DBLookupListBox), or 2) Arranging The Properties Of Fields Data Type (shown by u...
متن کاملFrequency of thalassemia carrier and Hb variant and the quality of stored donor blood
Metode: Penelitian ini menggunakan disain potong lintang dengan sampel berasal dari 138 donor darah. Dilakukan skrining talasemia dan Hb varian pada keseluruhan sampel, yang meliputi pemeriksaan hitung sel darah lengkap, analisis Hb metode HPLC dan analisis DNA untuk deteksi pembawa sifat talasemia α. Uji kualitas darah simpan dilakukan melalui penghitungan persen hemolisis sel darah merah pada...
متن کاملMultidimensi Pada Data Warehouse Dengan Menggunakan Rumus Kombinasi
Multidimensional in data warehouse is a compulsion and become the most important for information delivery, without multidimensional data warehouse is incomplete. Multidimensional give the able to analyze business measurement in many different ways. Multidimensional is also synonymous with online analytical processing (OLAP).
متن کاملContextual Priming and Feedback for Faster R-CNN
The field of object detection has seen dramatic performance improvements in the last few years. Most of these gains are attributed to bottom-up, feedforward ConvNet frameworks. However, in case of humans, top-down information, context and feedback play an important role in doing object detection. This paper investigates how we can incorporate top-down information and feedback in the state-of-th...
متن کاملObject Detection in Video using Faster R-CNN
Convolutional neural networks (CNN) currently dominate the computer vision landscape. Recently, a CNN based model, Faster R-CNN [1], achieved stateof-the-art performance at object detection on the PASCAL VOC 2007 and 2012 datasets. It combines region proposal generation with object detection on a single frame in less than 200ms. We apply the Faster R-CNN model to video clips from the ImageNet 2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MIND (Multimedia Artificial Intelligent Networking Database) journal
سال: 2022
ISSN: ['2528-0902', '2528-0015']
DOI: https://doi.org/10.26760/mindjournal.v7i1.21-36